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We have theoretically investigated the mechanism of the pressure-induced reconstructive zinc-blende to
rocksalt phase transition in SiC. We obtained 925 possible transition pathwayssTPsd using a group-theoretical
analysis method. This extensive survey of possible TPs is a significant feature which distinguishes this study
from previous studies. Of these 925 TPs, we identified eight which have the lowest enthalpy barriers, based on
first-principles electronic structure calculations. These eight TPs share a common underlying mechanism:
bilayer sliding ofs111d planes such that local bonding evolves from tetrahedral to octahedral without breaking
any bonds. This mechanism may be applicable to other related transitions involving similar bonding changes.
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I. INTRODUCTION

Silicon carbidesSiCd is of practical interest because of its
use in novel electronic devices, abrasives, and refractories. It
exhibits a wide band gap, a high breakdown field, low ther-
mal expansion, oxidation resistance, excellent thermal shock
resistance, and high thermal conductivity. In addition, it pos-
sesses favorable mechanical properties such as low density,
high strength, high hardness, and high wear resistance.
Changes in its structure, such as changes during a phase
transition, can significantly alter these properties. X-ray-
diffraction and shock experiments at high pressure1–3 indi-
cate a transition from the zinc-blendesZBd to the rocksalt
sRSd structure above 100 GPa in SiC. The coordination num-
ber of nearest neighbors changes from four to six during this
transition. The transition is reversible and the zinc-blende
structure is recovered below 35 GPa. Theoretical studies
based onab initio pseudopotential calculations4–6 yield a
transition pressure of 60 GPa and recent calculations using
linear combination of atomic orbitalssLCAOd density func-
tional theorysDFTd yield a value of 92 GPa.7

Increasing interest is being given to understanding the
mechanism of a transition,8–10 i.e., the changes which take
place at the atomic level. Understanding the transition
mechanism may lead to new experiments and measurements
and possibly the control of transition properties. We take the
mechanism for a phase transition to be the description of the
displacements of all atoms along a transition pathsTPd. We
assume periodicity is retained along the TP, the atoms
throughout the crystal are displaced coherentlysdefects are
neglectedd, and the crystal, as it moves from the initial to the
final structure, defines a space group symmetry. Obtaining
the transition mechanism is a challenging problem. Experi-
mentally, Knudson and Gupta9 reported a method where in-
formation from real-time picosecond time-resolved elec-
tronic spectroscopy coupled withab initio calculations
allowed the proposal of a TP in the wurtzite to rocksalt tran-
sition of CdS. Wickhamet al.10 showed that nanocrystal
shape changes, as a function of pressure, determined by
x-ray diffraction gave them details about the TP in the wurtz-
ite to rocksalt transition in CdSe. On the theoretical side
there are an infinite number of ways that one structure can be

deformed into another. It is well known that diffusionless
phase transitions, including reconstructive ones, with atomic
displacements and shear can often be described by looking
for a common subgroup of both structures.11–14

The ZB to RS transition in SiC has been widely studied.
The first suggested transition path was based on a common
subgroup with space group symmetryR3m.6,15 Catti used
LCAO-DFT methods to further investigate this TP and pro-
posed an orthorhombic mechanism with a common subgroup
symmetry of Pmm2 sRefs. 7,16d or more correctly
Imm2.17–19He found that this TP was favored over the more
simple TP ofR3m. In another study of the transition mecha-
nism, using sphere packing methods and no energy consid-
erations, Sowa also obtained theImm2 subgroup
mechanism20 and more recently proposed an additional
mechanism withP32 symmetry.21 Catti16 and Sowa20,21 have
noted that in theImm2 andP32 TPs no silicon-carbon bonds
are broken. However, no further study is reported on the
comparison of the two TPs. TheImm2 TP is also contained
in the unified path description of SiC polytypes transitions to
rocksalt by Miao and Lambrecht.22 The transition was also
studied using conventional molecular dynamicssMDd
simulation.23 Making no assumptions about the atomistic
mechanism, the SiC molecular dynamics cell evolved from
cubic through a monoclinic cell at the equilibrium pressure.
The monoclinic structure discovered in the MD simulation is
similar to the RS structure in terms of local bonding. Pre-
sumably, the monoclinic structure is a metastable structure
due to the fast-quenching artifact of MD simulations. No
analysis of transition pathway was provided in the MD study.

We have developed a systematic procedure for obtaining
possible microscopic mechanisms for reconstructive phase
transitions and have applied it to the zinc-blende to rocksalt
transitions in SiC. Some details of the algorithm are de-
scribed by Stokes and Hatch24,25 and has been used in our
studies of the B1-to-B2 transition in sodium chloride and
lead sulfide.24–26The procedure lets the user control the out-
put by restricting allowed strain tolerance, nearest-neighbor
distances, and unit-cell size change, and has been imple-
mented in the computer programCOMSUBS.25 Using some-
what liberal input constraints, we obtained 925 possible ato-
mistic TPs for this transition in SiC. This extensive survey of
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possible TPs is a significant feature which distinguishes our
current study from previous studies.

Calculation of enthalpy barriers for each of the 925 pos-
sible TPs imposes a challenge for conventional first-
principles electronic structure calculations with plane wave
basis. In this study, we adopted an efficient tight-binding
based first-principles method calledFIREBALL.27 The FIRE-

BALL results were verified with our plane wave calculations
using theVASP method28,29 for some selected TPs. TheFIRE-

BALL and VASP calculations are in close agreement, indicat-
ing that the general results presented in this paper are not
sensitive to the first-principles computational methods
adopted. In this paper, we discuss in detail our calculation of
enthalpy along the TPs. An analysis of the enthalpy barriers
for the TPs leads us to propose abilayer sliding model to
explain the mechanism of the ZB-to-RS transition. Such a
model may be applicable to other related phase transitions
involving similar tetrahedral-to-octahedral bonding changes.

II. ENERGETICALLY FAVORED PATHWAYS

First-principles calculations of the total energy in SiC
were performed usingFIREBALL.27 This code is a density
functional theory sDFTd flocal density approximation
sLDA d, generalized gradient approximation, and spin polar-
izationg approach to the electronic structure based on
pseudopotentials and local orbitals; further details of the
method can be found in Ref. 27. One of the important fea-
tures ofFIREBALL is the flexibility of constructing real-space
localized basis functions to take advantage of fundamental
chemistry in atomic bonding. This allows a substantial im-
provement in computational efficiency without suffering the
loss of accuracy. Here we use the local density approxima-
tion sLDA d limit of DFT, the Harris functional30 with a mini-
mal nonorthogonal local-orbital basis of slightly excited or-
bitals.

The electronic eigenstates are expanded as a linear com-
bination of pseudoatomic orbitals within a localizedsp3 basis
for both carbon and silicon. These localized pseudoatomic
orbitals, which we refer to as “fireballs,” are slightly excited
due to the boundary condition that they vanish at some ra-
dius rcscfireball

atomicsrdurùrc
=0d instead of the atomic boundary

condition that they vanish at infinity. The cutoffss4.5 and 5.4
Å for C and Si, respectivelyd are chosen in a way that pre-
serves the relative ionization energies and relative atomic
sizes for each species. The level of theory used is shown to
be an accurate level of approximation for Si-C random
alloys.31

We also performed some calculations usingVASP, a first-
principles DFT method, which is implemented with plane-
wave basis sets,28 ultrasoft pseudopotentials,29 and LDA to
the exchange-correlation interaction. The cutoff energy of
the plane-wave bases is 287 eV. The integrations over the
Brillouin zone were carried out by summingk points over
Monkhorst-Pack grids. Careful tests have been done to en-
sure the numerical convergences for thek-point samplings
and plane-wave cutoffs.

Using FIREBALL we calculated the lattice parametera and
the bulk modulusB for the SiC ZB structure atP=0, and

obtaineda=4.46 Å andB=170 GPa. The experimentally ob-
tained values32 area=4.31 Å andB=224 GPa. We next cal-
culated the phase transition pressurePt at temperatureT=0.
This is simply the pressure at which the enthalpy
H=E+PV of the two phases are equal. We obtained
Pt=87 GPa with a=4.05 Å in the ZB structure and
a=3.84 Å in the RS structure. The experimentally obtained
values2 are a=3.974 Å anda=3.684 Å in the ZB and RS
structures, respectively. Note that the transition displays a
large amount of hysteresissPt=100 GPa for ZB→RS and
Pt=35 GPa for RS→ZBd. Our calculated value is consistent
with the range resulting from the hysteresis. The transition
pressure predicted by ourVASP calculation isPt=64 GPa,
which is consistent with previous plane-wave results6,15

We usedCOMSUBSsRefs. 24,25d to find possible TPs from
the ZB to the RS structure in SiC.sAs the notes in Ref. 26
indicate, the algorithm described in Ref. 24 has undergone
some major revisions.d We used relatively liberal constraints
in the search.s1d We considered common subgroups with up
to eight atoms per unit cellsfour Si and four Cd. s2d We
allowed principal values of the strain tensor to be between
0.6 and 1.6.s3d We allowed atoms to approach each other as
close as 1.5 Å along straight-line TPs from the ZB to the RS
structure.s4d We allowed atomic displacements as large as
2.0 Å.

With these constraints, we obtained 925 possible TPs for
the transition. For each of these TPs, we usedFIREBALL to
estimate the enthalpy barrier by calculating the enthalpy
along a linear TP. We varied each structural parameterslat-
tice parameters and atomic positionsd according to

xm = s1 − jdxmi + jxmf, s1d

wherexmi andxmf are the initial and final values of themth
structural parameterxm, and j is the “transition parameter”
which varies from 0 to 1 as the transition takes place from
the ZB to the RS structures. This obviously overestimates the
true barrier height but provides an efficient way to determine

FIG. 1. Histogram of the enthalpy barrier heightsDH1 sper pair
of atomsd for linear TPs between the ZB and RS structures.
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which of the 925 TPs should be further considered as likely
mechanisms for the phase transition.

In Fig. 1, we show a histogram of the enthalpy barrier
heights obtained. The bar between 0.9 and 1.0 eV contains
eight TPs. These TPs clearly stand alone as being most en-
ergetically favorable among the 925 TPs found byCOMSUBS.

The details about these eight TPs are given in Table IsTPs 1
through 8d. The height of the enthalpy barrier along the lin-
ear TP is given in Table IIsDH1 columnd and the barrier
profiles are plotted in Fig. 2.sFor completeness, two more
TPs, 9 and 10, are added to the list in Table I. As noted
earlier these additional TPs have been suggested in the lit-

TABLE I. Some possible TPs for the phase transition from the zincblendesZBd to the rocksaltsRSd structure in SiC. Each TP is defined
by a common subgroupG8 of both ZB and RS. At each end of the transition, we give the lattice vectors ofG8 in terms of the lattice vectors
of G and we give the atomic positions in the setting ofG8. Note that for greater clarity we have changed many of the settings from those
given in the output ofCOMSUBS.

TP G8 G Lattice Si C

1 44 Imm2 ZB s0,−1/2,−1/2d , s0,−1/2,1/2d, s1, 0, 0d sad 0, 0, 0 sbd 0, 1/2, 1/4

RS s0,−1,0d , s1/2,0,−1/2d , s1/2,0,1/2d sad 0, 0, 0 sbd 0, 1/2, 1/2

2 9 Cc ZB s−1/2,−1/2,1d , s1/2,−1/2,0d , s1/2,1/2,1d sad 0, 1/4, 0 sad −1/8, 1/4, 3/8

RS s1/2,1/2,−1d , s−1/2,1/2,0d, s1, 1, 0d sad 0, 1/2, 0 sad 0, 0, 1/4

3 145P32 ZB s0,1/2,−1/2d , s−1/2,0,1/2d, s1, 1, 1d sad 1/3, 0, 0 sad 1/3, 0, 3/4

RS s0,−1/2,1/2d , s1/2,0,−1/2d, s1, 1, 1d sad 0, −1/3, 0 sad 2/3, 0, 5/6

4 1 P1 ZB s1/2,−1/2,0d , s1/2,0,−1/2d, s1, 1, 1d sad 0, 0, 0 sad 0, 0, 1/4

sad 2/3, 2/3, 1/3 sad 2/3, 2/3, 7/12

sad 1/3, 1/3, 2/3 sad 1/3, 1/3, 11/12

RS s1/2,0,−1/2d , s0,1/2,−1/2d , s1,1/2,3/2d sad 0, 0, 0 sad 2/3, −1/6, 1/6

sad 4/3, 2/3, 1/3 sad 1, 1/2, 1/2

sad 2/3, 1/3, 2/3 sad 1/3, 1/6, 5/6

5 9 Cc ZB s1/2,−1,1/2d , s1/2,0,−1/2d , s3/2,1,3/2d sad 0, 1/4, 0 sad −1/16, 1/4, 3/16

sad 3/4, 3/4, 1/4 sad 11/16, 3/4, 7/16

RS s−1/2,1,−1/2d , s−1/2,0,1/2d, s1, 2, 1d sad 0, 1/2, 0 sad 1/4, 1/2, 1/8

sad 1, 1, 1/4 sad 3/4, 1/2, 3/8

6 9 Cc ZB s1/2,1/2,−1d , s−1/2,1/2,0d, s1, 1, 2d sad 0, 0, 0 sad 5/8, 1/2, 3/16

sad 0, 1/2, 1/4 sad 1/8, 1/2, 7/16

RS s−1/2,−1/2,1d , s1/2,−1/2,0d, s2, 2, 0d sad 0, 1/2, 0 sad 1/2, 1/2, 1/8

sad 0, 1/2, 1/4 sad 0, 0, 3/8

7 1 P1 ZB s−1/2,1/2,0d , s−1/2,0,1/2d , s3/2,1,3/2d sad 0, 0, 0 sad 1/8, 15/16, 3/16

sad 1/2, 1/4, 1/4 sad 5/8, 3/16, 7/16

sad 0, 1/2, 1/2 sad 1/8, 7/16, 11/16

sad 1/2, 3/4, 3/4 sad 5/8, 11/16, 15/16

RS s1/2,−1/2,0d , s1/2,0,−1/2d , s1,5/2,1/2d sad 0, 0, 0 sad −3/8, 9/8, 1/8

sad 1/4, 1/4, 1/4 sad −1/8, 3/8, 3/8

sad −1/2, 1/2, 1/2 sad −7/8, 5/8, 5/8

sad −1/4, 3/4, 3/4 sad 3/8, 7/8, 7/8

8 1 P1 ZB s−1/2,1/2,0d , s−1/2,0,1/2d , s3/2,1,3/2d sad 0, 0, 0 sad 1/8, 15/16, 3/16

sad 1/2, 1/4, 1/4 sad 5/8, 3/16, 7/16

sad 0, 1/2, 1/2 sad 1/8, 7/16, 11/16

sad 1/2, 3/4, 3/4 sad 5/8, 11/16, 15/16

RS s1/2,−1/2,0d , s1/2,0,−1/2d, s1, 2, 1d sad 0, 0, 0 sad −1/2, 5/4, 1/8

sad 0, 1/2, 1/4 sad −1/2, 3/4, 3/8

sad −1, 1, 1/2 sad −1/2, 5/4, 5/8

sad 0, 3/2, 3/4 sad 1/2, 3/4, 7/8

9 160R3m ZB s−1/2,0,−1/2d , s0,1/2,1/2d , s1,1,−1d sad 0, 0, 0 sad 0, 0, 3/4

RS s−1/2,1/2,0d , s1/2,0,−1/2d , s−1,−1,−1d sad 0, 0, 1/8 sad 0, 0, 5/8

10 198P213 ZB s0,0,−1d , s0,−1,0d , s−1,0,0d sad 3/4, 3/4, 3/4 sad 1/2, 1/2, 1/2

RS s−1,0,0d, s0, 0, 1d, s0, 1, 0d sad 1, 1, 1 sad 1/2, 1/2, 1/2
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erature, but are not energetically favorable according to our
calculations.d

We now consider in more detail TPs 1 through 8. Previous
theoretical studies of structural phase transitions have prima-
rily considered only high-symmetry TPs with a small number
of structural parameters. In contrast, our current study in-
cludes low-symmetry TPs with a large number of structural
parameters and therefore imposes computational challenges
for finding how the structural parameters vary along the true
TP.

We have developed an efficient numerical algorithm
scalled the bow-function methodd for finding an approxima-

tion to the TP by locating the point which occurs at the
highest value along the true TP. This point is a saddle point
with respect to the structural parameters. We assume that the
linear TP in Eq.s1d is already a reasonable initial estimation
of the true TP. We also assume that the peak on the linear TP
is not too far distant from the saddle point on the true TP.
The problem at hand is how to get from the peak in the linear
TP to the saddle point in the true TP. If we simply minimize
the enthalpy with respect to the structural parameters, we
will “fall off” the saddle point. We solve this problem by
adding a quadratic termscalled a bow functiond to the linear
TP:

TABLE II. Enthalpy barrier heightsseV per pair of atomsd for
the TPs described in Table I.DH1 is the barrier height for the linear
TP. DH2 is the barrier height for the TP using bow functions, but
constrained by the symmetry of the common subgroupG8 listed in
Table I. DH2,VASP are these same barrier heights calculated using
VASP. DH3 is the barrier height for TP using additional bow func-
tions, constrained by the symmetry of the common subgroupG8
listed in Table IV.N1 is the number of atoms per unit cell used for
the calculation ofDH1 andDH2. N3 is the number of atoms per unit
cell used for the calculation ofDH3. Nw is the number of structural
parameterssand the number of new function weightsd used for the
calculation ofDH2 for TPs 4, 7, 8 andDH3 for the other TPs.

TP DH1 DH2 DH2,VASP DH3 N1 N3 Nw

1 0.97 0.62 0.61 0.52 2 8 18

2 0.91 0.65 0.69 0.52 4 8 27

3 0.97 0.69 0.57 0.54 6 6 21

4 0.92 0.51 6 21

5 0.94 0.67 0.53 8 8 27

6 0.95 0.57 0.54 8 8 27

7 0.96 0.54 8 27

8 0.98 0.51 8 27

9 1.99 1.68 1.86 1.39 2 8 27

10 3.78 3.01 1.99 8 8 27

FIG. 2. Enthalpy barriersDH1 as a function of the transition
parameterj along each of the first eight TPs described in Table I.
The TPs are linear with no bow-function corrections.

FIG. 3. Fractional change in monoclinic lattice parameters
sxm=a,b,c,bd as a function of the transition parameterj along TP
2. Dashed lines show the linear TPs, and solid lines show the TPs
with the bow-function correctionssbut still maintaining the symme-
try of G8=Ccd.

FIG. 4. Change in dimensionless atomic positions
sxm=ySi,xC,yC,zCd as a function of the transition parameterj along
TP 2. Dashed lines show the linear TPs, and solid lines show the
TPs with the bow-function correctionssbut still maintaining the
symmetry ofG8=Ccd.
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xm = s1 − jdxmi + jxmf + wmjs1 − jd, s2d

wherewm is the “weight” of the bow function for themth
structural parameterxm. sSimilar bow functions were used in
Ref. 26.d We find the saddle point on the true TP by mini-
mizing the height of the peak on the TP with respect to the
weightswm.

The minimization algorithm is straightforward. We begin
with the linear TP where all of the weightswm are zero. We
locate the enthalpy peak, which is usually nearj=0.5. We
then change one of the weights in either a positive or nega-
tive direction. This may move the position of the peak, so we
locate the peak again.sAs will be seen, some of our TPs
exhibit two peaks, so we always search for the highest peak
across the entire TP, not just in the vicinity of the location of
the peak before we changed the weight.d Then we check if
the height of the peak is lower than before we changed the
weight. If so, we keep the change. If not, we undo the
change. We repeat this for each of the weights until we fi-
nally arrive at the situation where no positive or negative

change in any weight lowers the height of the peak. This
final point at the top of the peak is the saddle point. The
enthalpy increases with respect to changes in all of the vari-
ablessthe weightsd except onesthe transition parameterjd.

Even though the TP we obtain is approximate it passes
through the saddle point on the true TP, and we thus obtain
the barrier height of the true TP. Our TP matches the true TP
at three points: the end points and the saddle point at the top
of the barrier and is a smooth quadratic curve which passes
through those three points.

The success of the bow-function method depends on an
enthalpy landscape which is smooth and simple. It would fail
to find the true saddle point if, for example, the true TP
followed twisting “canyons” so that the saddle point at the
top of the barrier is enclosed by higher peaks and inacces-
sible to the bow functions. Even if the true saddle point is
found, a complex enthalpy landscape could cause the true TP
to have important features which would be missed by our
approximate TP.

These are concerns in our present work because our final
TPs, as will be seen, do not exhibit a simple single peak. It
appears that the landscape could be quite complex, and our
bow-function method may not have found the true saddle
points. In that case, our enthalpy barrier heights would be an
overestimation of the true barrier heights. Furthermore, our
approximate TPs might even miss features of the true TPs
which are important for the understanding of the transition
mechanism. Because of the large number of dimensions in
the configuration spacesone dimension for each structural
parameterd, it is not even possible, with current computer
technology, to investigate the enthalpy landscape in sufficient
detail to determine how good our approximate TPs are.

This being said, we nevertheless have confidence that in
our present work, the bow-function method produces TPs
which have all of the essential features of the true TPs. As
will be seen, the TPs we obtained have helped us discover a
bilayer sliding mechanism common to all eight TPs with the

FIG. 5. Enthalpy barriersDH2 as a function of the transition
parameterj along each of the first eight TPs described in Table I.
The TPs include bow-function corrections that maintain the sym-
metry given in Table I.

FIG. 6. Projection of an fcc lattice onto the cubics111d plane.
Arrows show sliding directions which changeA planes intoB
planes,B planes intoC planes, andC planes intoA planes.

FIG. 7. s111d planes of atoms in the ZB and RS structures. The
open circles represent Si atoms, and the filled circles represent C
atoms. In the transition from ZB to RS, the top two planes slide
with respect to the bottom plane.

FIG. 8. A sequence of bilayer slidings that takes the ZB struc-
ture in sad to the RS structure insdd.
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lowest barriers. Furthermore, it is only with the help of these
TPs that we could have discovered how the barrier height is
lowered by allowing different bilayers to slide at different
rates. When a large number of structural parameters are
present, the bow-function method is a powerful tool for in-
vestigating TPs in reconstructive phase transitions.

As an example, consider TP 2 listed in Table I. For the
linear TP, the barrier height is 0.91 eV per pair of atoms
sDH1 in Table IId. The symmetry of the crystal along this
linear TP is monoclinic, space group No. 9Cc. Both the Si
and C atoms are at the Wyckoffsad position x, y, z. There
are eight structural parameters: the monoclinic lattice param-
eters a, b, c, b and the atomic positionsySi, xC, yC, zC.
sSince thex andz components of the origin ofCc are arbi-
trary, we holdxSi and zSi fixed.d When we minimize the
barrier height with respect to the eight weightswm, we obtain
0.65 eV per pair of atomssDH2 in Table IId, a considerable
improvement over the linear TP. In Fig. 3, we show the frac-
tional change in the lattice parametersa, b, c, b as a func-
tion of the transition parameterj. The dashed lines show the
changes for the linear TP given by Eq.s1d. The solid lines
show the changes which include the bow functions, as in Eq.
s2d. In Fig. 4, we show the changes in the atomic positions.

In Fig. 5, we plot the enthalpy barrierDH2 for TPs 1
through 8. Each barrier height has been minimized using
bow functions. The values forDH2 are given in Table II. For
TPs 1,2,3,9, we obtained similar results usingVASP, as can be
seen in the table. The plane-waveVASP method is much more
computationally demanding than the local basisFIREBALL

method. Our motivation for adopting a local basis method
here is because of its efficiency. By sacrificing a minor re-
duction in the accuracy, we can achieve a significant im-
provement on computational efficiency with our optimized
basis sets. It was not deemed practical to calculate any of the
other barrier heights usingVASP. As shown in Table II, re-
sults from the two computational methods are in good agree-
ment for the selected TPs and both methods provided a con-
sistent picture of which TPs have low barriers, relative to the
others, and thus which are the favored pathways.

It is worth noting that the two previously suggested low-
barrierImm2 andP32 TPs are included in our eight favorable
TPs found in this study. Our study also agrees with the pre-
vious study that bothR3m and P213 TPs have noticeably

higher transition barriers, which makes them less favorable.

III. TRANSITION MECHANISM

An analysis of the eight most favored TPs shows that they
share one common feature, i.e., they correspond to the eight
possible ways that atomic bilayers ins111d cubic planes slide
relative to one another with no broken bonds, if we allow
repeat units up to four bilayers. Our bilayer sliding model is
best illustrated by projecting the face-centered cubicsfccd
lattice onto the s111d plane ssee Fig. 6d. The positions
markedA, B, C lie in different s111d planes. These planes
are stacked with the repeating sequenceABCABC… sor,
equivalently,ACBACB…d. If we place the silicon atoms at
the lattice points, then the carbon atoms lie in planes between
the silicon planes. We denote the silicon positions with
A, B, C and the carbon positions witha, b, c. fTheA anda
planes project onto identical points on thes111d plane. We
just use upper and lower case letters to distinguish between
Si and C planes.g Using this notation, the repeat unit of
stacking in ZB is AaBbCc sor AaCcBbd and in RS is
AcBaCbsor AbCaBcd.

In Fig. 7, we show how thes111d planes slide to change a
ZB structure into a RS structure without breaking any bonds.
In ZB, the carbon atoms of one plane sit directly above the
silicon atoms in the plane belowsthe a andA planes shown
in the figured. There is one bond between each carbon atom
and the silicon atom in the plane below. The carbon atoms
also sit directly below a “pocket” of silicon atoms in the
plane abovesthe a andB planes of the figured. Each carbon
atom is bonded to three silicon atoms in that plane. This is a
total of four bonds per carbon atom in ZB. To change from
ZB to RS, theaB bilayer slides so that the C atom now sits
in a pocket of silicon atoms of the plane below. This sliding
causes theaB bilayer to become abC bilayer. Each carbon
atom is now bonded to three silicon atoms in the plane below
as well as in the plane above, a total of six bonds. The four
silicon atoms to which each carbon atom is bonded in ZB
remain bonded to that carbon atom in RS. The sliding causes
two more silicon atoms to be bonded to each carbon atom,
raising the number of bonds from four to six. This is what we
mean by “no broken bonds.”

As shown in Fig. 8, the first-step sliding between theA
and aB layers changes the stacking sequence from
AaBbCcAaBbCcfFig. 8sadg to AbCcAaBbCcAafFig. 8sbdg.
Note that every layer above theaB bilayer is shifted along
with the aB bilayer, leading to a relabeling of every subse-
quent layer. Next, we slide thecA bilayer with respect to the
C layer below it, and we obtainAbCaBbCcAaBbfFig. 8scdg.
And finally, we slide thebC bilayer with respect to theB
layer, and we obtainAbCaBcAaBbCcfFig. 8sddg. We now
have one repeat unit of the RS structure:AbCaBc. We repeat
this procedure to change each repeat unit of ZB into a repeat
unit of RS. Of course, in an actual phase transition, all of
these slidings take place simultaneously.

The eight favorable TPs differ in the combination of the
sliding directions in the bilayer sliding sequence. As can be
seen, we require slidings that changeA into B layers,B into
C layers, andC into A layers. From Fig. 6, we see that for

TABLE III. For each TP, the sequence of slidings of adjacent
bilayers is given. The numbers in the sequences refer to directions
indicated in Fig. 7. Also, the shear straine is given for each TP.

TP Sequence e

1 1 0.71

2 12 0.35

3 123 0.0

4 112 0.41

5 1213 0.18

6 1122 0.35

7 1112 0.47

8 1123 0.18

HATCH et al. PHYSICAL REVIEW B 71, 184109s2005d

184109-6



each case, the slide can take place in three different direc-
tions which we label 1,2,3. The intermediate structures along
the TPs from ZB to RS are distinguished by the relative
directions of the slidings. For example, we obtain TP 1 when
we slide every bilayer in the same direction. Every bilayer is
equivalent along this TP, leading to a structure with the same
size of primitive unit cell as in ZB and RS. We obtain TP 2
when we slide alternate bilayers along directions 1 and 2,
respectively. This leads to a structure with a primitive unit
cell twice as large as that in ZB and RS. The sliding se-

quence in Fig. 8 actually depicts TP 3 where the three slid-
ings shown are in directions 1,2,3, respectively.

In Table III, we show the repeat unit of the sequence of
sliding directions for TPs 1 through 8. This table gives every
unique way in which this sliding can take place for repeat
units up to four bilayers. Based on this analysis, we can draw
an important conclusion thatCOMSUBShas found every pos-
sible way this can be donefor the sequences of sliding di-
rection which have repeating units of up to four. Additional
TPs can be found if longer repeating units are allowed. How-

TABLE IV. TPs from Table I with the symmetry lowered so that the motion of each cubics111d plane
within the unit cell is independent along the TP.

TP G8 G Lattice Si C

1 8 Cm ZB s1,−1/2,−1/2d , s0,−1/2,1/2d, s2, 1, 1d sad 0, 0, 0 sad 5/8, 0, 1/16

sad 1/2, 0, 1/4 sad 1/8, 0, 5/16

sad 0, 0, 1/2 sad 5/8, 0, 9/16

sad 1/2, 0, 3/4 sad 1/8, 0, 13/16

RS s1/2,−1,1/2d , s1/2,0,−1/2d, s1, 2, 1d sad 0, 0, 0 sad 3/4, 0, 1/8

sad 1/2, 0, 1/4 sad 1/4, 0, 3/8

sad 0, 0, 1/2 sad 3/4, 0, 5/8

sad 1/2, 0, 3/4 sad 1/4, 0, 7/8

2 1 P1 ZB s0,−1/2,1/2d , s1/2,0,−1/2d, s1, 1, 2d sad 0, 0, 0 sad 7/8, 1/8, 3/16

sad 1/2, 1/2, 1/4 sad 3/8, 5/8, 7/16

sad 0, 0, 1/2 sad 7/8, 1/8, 11/16

sad 1/2, 1/2, 3/4 sad 3/8, 5/8, 15/16

RS s0,1/2,−1/2d , s−1/2,0,1/2d, s2, 2, 0d sad 0, 0, 0 sad −1/2, 1/2, 1/8

sad 0, 0, 1/4 sad 1/2, 1/2, 3/8

sad 0, 0, 1/2 sad −1/2, 1/2, 5/8

sad 0, 0, 3/4 sad 1/2, 1/2, 7/8

3 1 P1 ZB s0,1/2,−1/2d , s−1/2,0,1/2d, s1, 1, 1d sad 0, 0, 0 sad 1/3, 2/3, 1/12

sad 1/3, 2/3, 1/3 sad 2/3, 1/3, 5/12

sad 2/3, 1/3, 2/3 sad 0, 0, 3/4

RS s0,−1/2,1/2d , s1/2,0,−1/2d, s1, 1, 1d sad 0, 0, 0 sad 1/3, 2/3, 1/6

sad 2/3, 4/3, 1/3 sad 1, 1, 1/2

sad 4/3, 2/3, 2/3 sad 2/3, 1/3, 5/6

5 1 P1 ZB s1/2,−1/2,0d , s0,1/2,−1/2d , s3/2,1,3/2d sad 0, 0, 0 sad −1/16, 1/16, 3/16

sad 1/4, 3/4, 1/4 sad 3/16, 13/16, 7/16

sad 1/2, 1/2, 1/2 sad 7/16, 9/16, 11/16

sad 3/4, 1/4, 3/4 sad 11/16, 5/16, 15/16

RS s−1/2,1/2,0d , s0,−1/2,1/2d, s1, 2, 1d sad 0, 0, 0 sad 1/4, −1/4, 1/8

sad 1/2, 1/2, 1/4 sad −1/4, 1/4, 3/8

sad 0, 0, 1/2 sad 1/4, −1/4, 5/8

sad 1/2, −1/2, 3/4 sad 3/4, 1/4, 7/8

6 1 P1 ZB s0,1/2,−1/2d , s−1/2,0,1/2d, s1, 1, 2d sad 0, 0, 0 sad 1/8, 7/8, 3/16

sad 1/2, 1/2, 1/4 sad 5/8, 3/8, 7/16

sad 0, 0, 1/2 sad 1/8, 7/8, 11/16

sad 1/2, 1/2, 3/4 sad 5/8, 3/8, 15/16

RS s0,−1/2,1/2d , s1/2,0,−1/2d, s2, 2, 0d sad 0, 0, 0 sad −1/2, 1/2, 1/8

sad 0, 0, 1/4 sad −1/2, −1/2, 3/8

sad −1, −1, 1/2 sad −1/2, 1/2, 5/8

sad 0, 0, 3/4 sad 1/2, 1/2, 7/8
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ever, those TPs are expected to have similar barrier heights
as the eight TPs listed here.

Now we return to the barriers shown in Fig. 5. We note
that four of the TPss4,6,7,8d have barrier heights that are
substantially lower than the others and appear to be a super-
position of two or more peaks. Three of themsTPs 4,7,8d
have the triclinic symmetry, space group No. 1,P1. Each
atom in the unit cell belongs to a differents111d layer. This
allows thes111d bilayers in the unit cell to moveindependent
of each other. We see in Fig. 2 that the peak of the barrier
occurs when adjacent bilayers have slid about half waysj
<0.5d. If some adjacent bilayers could slide ahead of others,
then the peak in the barrier for different adjacent bilayers
would be crossed at different values ofj. This could lead to
an overall lower barrier with a shape that would appear to be
a superposition of two or more peaks.sWe note that TP 6
also shows this feature, even though the space-group sym-
metry Cc does not allow the motion of all four planes to be
independent of each other. In this case, the symmetry still
allows the peaks to be crossed at different values ofj.d This
suggests that if we lowered the symmetry of the other TPs so
that there are three or more inequivalents111d bilayers in the
unit cell, we can lower the barrier heights of the other TPs as
well. sNote that this does not agree with the conjecture that
transitions will follow paths with maximal subgroup symme-
try.d

In Table IV we give the new settings required for TPs
1,2,3,5,6. In these new settings, the number of structural pa-
rameters and associated bow functions are greatly increased.
For example, in a triclinic unit cell containing eight atoms,
there are 27 structural parameters. Minimizing the enthalpy
barrier with respect to 27 weights would be possible only for
a highly efficient computational method such asFIREBALL.

In Fig. 9, we plot the enthalpy barriersDH3 we obtain
using the increased number of bow functions allowed by the
lower symmetry. We also include from Fig. 5 the barriers for
TPs 4,7,8. As can be seen, the barrier heights and shapes are

nearly the same for every TP. In Table II, we give the nu-
merical valuesDH3 for these barrier heights. Note that the
lower symmetry in TP 6 had very little effect on the barrier
height and shape.

On the basis of Fig. 9, we conclude that all eight TPs are
equally energetically favorable, to within the accuracy of
FIREBALL. However, the strain accompanying a transition
must also be considered. We assume in our calculations that
the entire crystal transforms coherently. In reality, phase tran-
sitions generally result in a number of domains with different
orientations. A large anisotropic strain can hinder a phase
transition as different domains try to strain the crystal in
different directions. In the present case, the sliding of the
cubic s111d planes causes a shear strain. Using the sequences
in Table III and the directions in Fig. 6, the shear strain for
each TP can be easily calculated. We give the results in Table
III.

For example, in TP 1, everys111d bilayer slides a distance
a/Î6 sa is the lattice parameter of the cubic unit celld relative
to the adjacent bilayer. Thes111d bilayers are a distance
a/Î3 apart. This results in a shear strain ofsa/Î6d / sa/Î3d
=1/Î2.

In TP 2, alternatings111d bilayers are displaced in direc-
tions 1 and 2, respectively. If we add these two directions, we
obtain a net displacement of the same amounta/Î6 but in a
direction opposite to direction 3. This displacement occurs
over two bilayers, so the shear strain issa/Î6d / s2a/Î3d
=1/2Î2.

In TP 3, the sum of displacements in directions 1,2,3 is
zero, resulting in zero shear strain. In fact, this is the only TP
among the eight that has zero shear strain. This favors TP 3
over the others.

IV. CONCLUSION

In summary, we have systematically studied the possible
transformation pathways for the zinc-blende to rocksalt tran-
sition in SiC with the cell sizes of intermediate structures up
to eight atoms. Our first-principles calculations have identi-
fied eight favorable TPs among the 925 possible candidates
listed by aCOMSUBSanalysis. Common features in the eight
favorable TPs leads us to the discovery of the bilayer sliding
mechanism for the structural transformation of this type. Ac-
cording to this model, all the related TPsseven when longer
repeating sequences are consideredd are equally favorable in
terms of enthalpy barrier heights. The only thing we can
really conclude is that the transition takes place by some
sequence ofs111d bilayer slidings. In a real sample, the se-
quence of sliding directions may even be random without a
definite period. However, we would expect all three direc-
tions to be present in approximately equal amounts so that a
minimal amount of shear strain would occur.
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FIG. 9. Enthalpy barriersDH3 as a function of the transition
parameterj along each of the first eight TPs described in Table I.
The TPs include bow-function corrections that maintain the sym-
metry given in Table I for TPs 4,7,8 and the symmetry given in
Table IV for TPs 1,2,3,5,6.
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